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A game problem on the convergence of controlled objects by the instant t = 6 is con- 
sidered in a 8 xed time interval ft,, 61. It is assumed that the pursuing object is an iner- 
tial point andthat the pursued object is inertialess. The problem of constructing the pur- 
suer’s optimal minimax strategy is considered. This strategy ensures the minimax of the 
distance between the objects at a given instant. It is proved that the mixed strategy of 
special form (derived in [3]) which operates within the framework of the mathematical 
apparatus of differential equations in contingencies is such a strategy. 

1. Let us consider a differential game involving the two Objects r&i) and m@) moving 
in the horizontal plane qi&. The motion of the pursuing object m(i) (Yt, Ys) controlled 
by the first player is described by the system of equations * 

Yi = Y39 Yz' =: Y4, Ys’ = Us, y4’ = u* (1.1) 

where the control vector u = u* (ug, u4) satisfies the inequality 
(w:,‘[t] + U14 [t])“‘< p (1.2) 
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The pursued object AZ) (zi, za) controlled by the second player moves according to 

the equations . 
21 = VI, 

. 
2.J = v, (1.3) 

where the control vector v = u (ut, us) is subject to the restriction 

(Vi2 [tl + vss bl)“~ < v (1.4) 
The game payoff y is the distance between the objects m(l) and m(s) at the given 

instant t = 6, i. e. 
y = [(y, Ku - Zl IW + (y3 Ml - z, H+l)31”~ (1.5) 

As we know, Eqs (1. l).(L 3) under restrictions (1 2). (1.4) describe the motion of 
objects in the game pursuit problems sometimes referred to as “isotropic missile” or 

“boy-and-crocodile” problems p-3). 

Let us introduce some notation _ We denote the time in our ancillary discussion by 
7;’ the time in which the original game takes place is t. The argument z in the sym- 
bols for the functions describing the motions and controls in the ancillary problems 

appears in parentheses. The square brackets in which we place the argument t means 
that we are referring to the motions and controls actually realized in the course of the 

game. The set consisting of the four-dimensional vectors u = u (ur, us, us, uq) = 
= u+ (us, ud) whose components uiand us satisfy the condition ui = us z 0 and 
whose components usand &are subject to restriction (1.2) will be denoted by U,. The 
set of vectors u = v (ur, v2) whose components vi and v, are subject to restrictions 

(1.4) will be denoted by VT. 

We assume that the controlling force u is formed by the feedback principle and that 

its value u [t] reaIized at each present instant t E [t,, 91 is determined by the posi- 
tion realized at that instant. 

We shall employ the definition of a game strategy given in p]. Thus, the permissible 

pursuit strategies Uwill be identified with the sets U, = U, (t, y, z) associated 

with each possible position (t, y, z) and having the following properties : 
1) the inclusions 

are fulfilled 
u* (t, Y, x) c u, 

2) the sets U, (t, y, z) are closed and convex ; 
3) the sets U, (t, y, z) are semicontinuous above by inclusion as (t, y, z) 

varies in the neighborhood of each possible position. 
In the case of the pursued object we permit any integrable realizations u [t] restricted 

by condition (1.4). The motion of system (1.1). (1.3) generated by the strategy U = 

= U (t, y, Z) and the arbitrary integrable realization of the control u = u [t] is 

defined as an absolutely continuous vector function (v It], z [t]) which for almost aEI 
t E Lt,, 61 satisfies the system of equations 

. 
Yl = ys ItI, 92’ = Y4 ItI, Y's bl = u3 itI, y; ItI = u4 [tl 

. 
Zl = u1 It], 

where 
z; = v, [tl 

u ItI E u, (t, y [tl, z [tl) 

We Can now formulate the problem as follows. We are to find the permissible stxa- 
tegy U” (t, y, Z) which produces the minimum in the following relation: 

7. = minU max,Ill maxvrtlr = 

= minumax,[fImax,[tIl[(yl 161 - z1 [+])2 t (y, 161 - ~3 [6])2p (1.6) 
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IWe mIi+, is taken over all the solutions y it] corresponding to the strategy 
u = u (t, y, z) and to the control u = Y [tf ; mintt and max, are computed over 
ail the possible strategies U = U (t, y, z) and integrabie vector functions v = 
= u ItI (u ItI Cz V,) *respectively, 

I. Now let us turn to the solution of the stated problem. To this end we consider the 
attainability domain ( [4], p. 331) of obWu (1. I), (1.2) and (1.3). (I. 4) from the posi- 
tion (6 y ItI) and (t, z [t)). respectively, by the instant t = @ ; we shall construct this 
domain in the plane qlqa. Let us denote by @:’ (t, y, 6) the closed e-neighborhood 
of the domain G(l) (t, y, 6). The domain G(l) (t, y, 6) is the set of points lying in 
the piane Q1(IB and attainable by the first player from the position (t, y It]) by the 

instant 1 I $, Similarly, the attainability 
domain G(l)(t, z, 6) is defined as the set of 
points lying in the plane qlqs and attafnabfe 
by the second player from the positiontt, z [t]) 
by the instant t= 6. The a~~abi~~ domains 
Gil) (t, y, 9) and G@ (t, z, @) in the plane 
Q& are disks. The radius r$” (t, @3) of the 
domain G’,“‘(t, y, 6) is given by the equa- 

tion rilf (t, 6) = l/sp (6 - t)% -I- t: 

(8 > 0) (2.1) 

and the radius r@ (t, 4) of the domain 
G(s) (t, z, 6) by the equation 

PItI 

instant t has the coordinates 

%2’(f, 6) = Y (@ - t) (2.21 

The center 01) of the domain GJ’) at the 

yc = {ylC I& y2c Id} = {gyl It1 c (6 - qy, M, 92 ItI + (@ - 4% itI) 

The coordinates of the center 0s) of the domain G(s) coincide with the coordinates 
of the point (zl. ttl, Z, ffl}. 

Let A= A (t, y, z) be the distance between the centers o(1) and m2) of the disks. 
so that 

Aa I {zy ttl - Yr ItI - @ - t) ys M)s + (z&l - y&l - (19 - Q&4 W” 

Expressions clearly imply the possibility of choosing initial states y [tOI and z It,] 
in such a way that it is impos&bfe to retain the domain G(s) (t, z ftl, @) in an arbiaa- 
rily small neighborhood of the domain G$’ (t, y it], 6) for all t E (to, 61, since 
the radius fiiu desueases as the square of the quantity 6 - t , the radius ~(2) is On the 
order of the quantity 6 - t, and the initial value E’ = E (t,,, y it,], 2 i&J) can 
always be made arbitrarily small (even zero) by suitable choice of the initial position 
(to, $40 = y It,19 20 = z L&J) l 

Let US suppose that at some instant t E ft,, 31 the domain G(a) ft, z, S> is absorbed 
by the domain @4if (t, y, @) (Fig. 1). where 

e It1 = v (e - t) - 1/2p (6 - t)2 + A (t, Y, 4 (2.31 

WC US &OW that the required strategy U” (t, y, z> which yields mk.rmaxOmax, Y 
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is the so-called “mixed” exuemal strategy U- defined by certain sets U,. This stra- 
tegy U- is constructed as follows pj. 

We know ~31 that the function a0 (t, Y [tl, z [tl) is defined by the equation 

eO(t, Y[rl, r[tl)= ;z: [P (2) (t, 2, 6, 1) - P (1 ‘(h y, 6, l)] (2.4) 

where p@) (t, z, 6, Z) and p(l) (t, Y, 6, 1) are the support functions of the sets G(s) (t, 

z, fi) and G(l) (t, y, 8). 
If the game position (r, Y [tl, z [tl) is such that the maximum in (2.4) is provided 

by the unique vector 1 = 1” (t, Y, z, 6) of this position, we associate the set U, = 
= U_ (t, Y, z) with the set of all those vectors U0 for which the maximum condition 

holds. 
I”’ (t, Y, 2, e> y (8, r) U. = rnn. Z”‘(t, y, 2, fi)Y(+, r) U 

Here Y (‘8, t) is the fundamental matrix of ,“,I,, (1.1) for U G 0, and the prime 

denotes transposition of the column vector 2”. 

In this case the set U, (t, y, z) consists of a unique vector, 

u_(r, Y, z)=={O,O, U(Z~-Y~,--(*-~)Y,)C /~(~z-Y~-(~---)YJA-~I 
(A#01 

If the maximum in (2.4) is not provided by a unique vector 2” then we set 

u- (& Y, 2) = UlI 

We note that in the problem under consideration the vector I” is unique for A > 0 
and nonunique for A = 0. 

We have thus defined the strategy U- given by the sets 

u_ (r, Y, 2) = (0, 0, p @I- YI - (t’ - 9~s) A-‘, P (2s - Y, - (@ - t)yd) 4-9 

(4>0) 

u_. P, Y 1 4 = u, (A = 0) (2.5) 

3. Let the duration of game (l.l)-(1.6) satisfy the condition 6 - t, > v / p,. 
Let ti break up the interval [to, +] into the interval [t*, *,I and the half-interval 

[to, t*) , i. e. at the point t* = 6 - v / U. 

We can verify the validity of the following ancillary statement. 

For any initial position (t”, y [to], z [to]),. where t* < t” <:6, we have 

minU max,[t]max,[tl y = d*)(r) - ‘“)(t’) + A (t”, y WI, z WI) (A 20) 
This minimax is provided by the strategy u-. 

Proof. Let the domain G(s) (to, z, 6) be absorbed by the function G$.l (t”, y, 
fl), where the function e [tl is of the form (2.3), at the instant t”, t* & to < 6 . 

In the domain (t, y, z) defined by the inequality A (t, y, z) > 0 the derivative 
dA / dt computed along the system motion (1.1). (1.3) generated by the first-player 
strategy U’.and by the integrable second-player strategy u ItJ , is of the form 

dA / dt = {(Q - y, - (6 - 4YJ (VI it1 - (6 - qu, bl) + (3.1) 
+ (5 - ~2 - (6 - t)yd (~2 [tl - (6 - t) u,M)}A-’ < v - p (a - t) 

v--(6-t)= min,maxO dA 1 dt (A > 0) (3.2) 

where the control U which minimizes expression (3.2) coincides with the control dictated 
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by the strategy U- for A > 0. The control V* [tl which maximizes the expression 
dh / dt with respect to Y in the domain where A > 0 is of the form 

u* ItI = (Y (zt - y, - (3 - 0&A-r, v (~2 - yz - (6 - %/4)A-r) (A >O, 

The function A (r, y, 2) defined along system motion (1. I), (1.3) generated by the 
strategy. U-and by the arbitrary integrable second-player realization Y It1 is clearly a 
continuous function of the argument t. 

Hence, the function A It] is majorated as follows: 

From inequality (3.3) we infer that 

a [@I = r.(s) (6) - r(l) (6) + A [@I < v (6 - to) - l/sp (6 - t”)s + 

+ A It”1 = r(s) (P) - r(l) (t”) + A It”1 (3.4) 

For t = 6 we clearly have 

a (G, y iSI, 2 WI) = ((yr [@I - 21, f*,f)* + (y, [$I - z, &])2)‘/* (3.5) 
From (3.4) and (3.5) we have 

y < Its, (P) - r(‘)(P) + A [toI (3.6) 

Since, beginning at the instant t = to and until the instant t = 19, the second player 
can realize some constant control u of maximum absolute value which brings the point 
z {toI to the intersection of the boundaries of the domains Q& (to, y, 6) and 
G@ (to, Z, 6) and therefore ensures that 

y > ri*) (to) - tilt (to) + A It”1 

at the instant t = @ , it follows that the strategy U = U- is the optimal minimax 
first-player strategy in the interval to ,( t < 6. This strategy ensures for the first player 
a game payoff not inferior to 

Y = fi2) (to) - 0 (to) -j- A [to] (3.7) 
NOW let us consider the case where the equation A (t”, y [t”f, z ft*f) I 0 is fuX- 

filled at the instant t = to In this case, making use of the continuity of the function 
A (t, y, z) in the arguments y and & and of the fact (implied by (3 2) ) that 

m&max,dA / dt = v - p (@ - t) > 0 (t E [to, i?], A > 0) 

and repeating verbatim the above argument for the domain A > 0 we conclude that 
the strategy u- is the optimal minimax first-player strategy which ensures for the lat- 
ter a game payoff not inferior to 

Y = fis, (to) - $1) (t”) 134 

From the above conskierations we infer that if the duration of game (1. I)-@. 6) 
satfsfies the condition 6 - t, ( v / p, then the strategy U” ensures for the first 
player a game payoff not inferior to (3.7) or (3.8) if A (to, y It,], z It,]) > 0 or 

A (to, y [&,I, z it,]) = 0 ,respctivelyy, 

4, Let us consider game (1. I)-(1.6) in the haif-interval [to, t*). First we note 
that in accordance with (3.1) and (3.2) in the domain (r, Y, 2) where A (8, y, z) > 
> 0 the derivative &I f d# computed along system motion (1. I), (1.3) generated by 
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the first-player strategy ,U- and by the integrable second-player strategy v It1 satisfies 
the condition dh/dtGv-p((6-t)<O (t E Ito, t*), A > 0) (4.1) 

Let the first player choose a control dictated by the strategy U’ in the half-interval 
it,, t*) ; let the second player realize some integrable control v it]. Then, depending 
on the values of the function A (t, y, z) computed along system motion (1.1). (1.3) 
generated by the first-player strategy U- and by the arbitrary integrable realization of 
the second-player control v, we have three cases of game (1. l)-(1.6). Let us consider 

each of these cases individually and show that in each of these cases U’ is the first 
player’s optimal minimax strategy. 

The first case prevails when inequality A (t, p, z) > 0 is fulfilled for all t E [to, 
t*) along system motion (1.1). (1.3). 

III this case, computing the derivative & (t, y ItI, z it]) / dt along system motion 

(i.l),(l. 3) for t ( t*, we find that o!a (t, y ItI, z itI) / dt S 0 ; nexLrepeating 
the statements used to prove the ancillary statement for t > t*, we find that u- is the 

optimal minimax strategy which ensures for the first player a game payoff y not inferior 

to minu max,[t] rnax,[t]r = r(2) (t*) - r(l) (t*) + A* G 8 (to) 

A* = A (t*, y It*], z[t*]) 

The second case occurs when A (t,, y,, z,,) = 0 at the instant t = t, . The ancil- 
lary statement implies that if the duration of game (1. l)-(1.6) satisfies the condition 
6 - f, > v / cc, then iintr max,[f] maxu[f]r > 1/2vnpe1 

But (4.1) implies that system motion (1.1). (1.3) generated by the first-player stra- 

tegy U’ and by an arbitrary integrable realization of the second-player control v remains 
on the ‘set A (t, y, z) s 0 for t E It,, t*). Hence, our preceding discussion implies 
that the strategy U- ensures for the first player a payoff of game (1. l)-(1.6) which is 
not inferior to minumax,[t] max,[2] y = 1/sv2~-r 

and is the optimal minimax first-player strategy in this case. 
Finally, we have the third case of game (1. l)-(1.6) where the inequality A (to, ZJ,, 

zo) > 0 is fulfilled for some t = t, , and where the equation A (to*, yo*, zoc) = 

= 0 (where yO* = y it,*], zo* = z [to*] ) is satisfied for the first time at some 
t = t,* 0, < t, * G t*)‘along the system motion (1.1). (1.3) under consideration. 

Let us show that U-is the optimal minimax first-player strategy in this case as well. 
Recalling that the duration of game (l.l)-(1.6) satisfies the condition 6 - t, > 

> v / p, we infer from the ancillary statement that 

minu max,[i] maxflt]y > 1/2v2y-l (4.2) 

Expressions (3.2) and (4.1) imply that the strategy TJ’ ensures fulfillment of the 
equation 

As* = minu maxPIt] maxup] A (t*,,, y [to* 1, z [to*]) = 0 
by the instant i = t,*. 

But (4.1) implies that system motion (1.1). (1.3) generated by the first-player strategy 
U- and by the arbitrary integrable second-player realization v [t] remains (during the 

interval t,*< t < t*) on the set (t, y, z) *defined by the condition A (t, y, ,z) 3 0 
for t E [to*, t*J. 

Thus, the saategy U-ensures equality in (4.2) for the first player. This means that 
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the strategy U- ensures for the first player a payoff not inferior to 

minu maxti[tI max,ItIr = l/sv*ltW1 
and constitutes the optimal mlnimax strategy in this case of the game. 

The resulting solaia~ (I/ It], z It]) of system (1.1). (1.3) correspaading to the strategy 
U u-=u” I and to an arbitrary integrable reallzation u = v [tl can be approxi- 
mated by means of the following discrete scheme. 

Let us break up the interval its, ti] into half-intervals 6 = [xi, pi+& at the 
points z[ (0 < i ,( n) . The discrete strategy u”(s) (71, y LrJ, z (TJ) forms the 
control u ItI in the following way. Let the position (xi, y 1711, z kg]) be realized at 
theinstant t=Zf. If A (zt, y hJ, z [zil) > 0, then we set the control u If 

(x1< r < v1+3 constant and equal to 

ut [tl = (0, 0, IL (xi [vtl - y, [ril - (@ - r&/s [vtj) A-l Iql 

in the half-interval [‘rl, ~i+~) . 

But if A (rl, y 1~~1, z hJ) = 0, then we set the control u [tl (ti < t < ~t+~) 
equal to an arbitraty constant vector which satisfies the condition u [tl = u fz il E U,. 
The second player acts as before, choosing arbitrary integrable reallzadons V ItI. 

We can show that as 6 tends to zero, the resulting trajectories (g [tl, z M) of system 
(1.1). (1.3) converge to a certain solution of the equations in contingencies correspond- 
ing to the strategy u” and to the arbitrary integrable realization v [tl. 

we are therefore able to say that for any a > 0 then exists a 6’ > 0 such that for 
any discrete scheme with the interval 8 ( 0 < 8 ,C 6”) and for any second-player beha- 
vior we have a game payoff J’@) which satisfies the inequality 

+s) & minn maxo[f] maxu[tfl + -2 

The author is grateful to N. N. Krasovskii for stating the problem and for his useful 
criticism of the resulti, and to A. I. Subbotin for his interest and valuable comments. 
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